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Abstract: 
Feature lines are a substantial means for segmenting measured point clouds, especially in cases where a surface model 
needs to be generated from the data. In this article, methods will be described for the automated extraction of feature 
lines from measured or scanned point clouds. These methods can be applied to points from any sensors as they do not 
require sorted or edited data sets. In this paper, the mathematical basis for the extraction of feature lines, experimental 
results and the limitations of the methods will all be presented. 
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Introduction 

To date, a 3D CAD model is usually derived from an existing 
physical part firstly by scanning the physical part with a 3D 
scanner, e.g. laser triangulation scanner or coordinate measuring 
machine (CMM) and then measuring and analyzing the dense 
discrete point data in order to obtain the 3D CAD model. In the 
case of laser scanners with varying densities, for example, the 
measured data is typically in the form of large point clouds made 
up of millions of points. One class of reverse engineering methods 
is based on the segmentation of point clouds into polygonal 
regions to fit an individual surface to each region (s. [10]). To 
avoid undesired smooth surfaces in regions with sharp edges, the 
boundaries of each polygonal region should be formed by the 
sharp edges of the scanned part (together with additional 
boundaries). As this segmentation must be carried out manually in 
current CAD systems, this paper deals mainly with methods for 
extracting feature lines (sharp edges or edges with small radii) 
from scanned point clouds automatically. In order to be 
irrespective of special 3D scanners, no point cloud order 
information will be taken into consideration – the point cloud will 
be regarded as totally unsorted scattered data. Data structures will 
be presented capable of handling even huge point clouds 
efficiently.  

The algorithms for automated feature-line extraction attempt to 
find locations where surface normal vectors suddenly change 
direction. This seems to be a contradiction as normal vectors 
cannot be determined until the surface has been computed, but 
normal vectors are required so that the boundaries of the surface 
may be calculated first. However, algorithms for the robust 
approximation of normal vectors have been developed and will be 
described in this paper. As the change in direction of normal 
vectors represents the curvature of the part surface, the feature line 
extraction will therefore be based on these point curvature values. 

Data Structures for Operations on Dense Point Clouds 

Scanning with modern tactile or optical devices results in point 
clouds containing as many as several millions of points. 
Algorithms depending quadratically on the number of points may 
no longer be used here due to the extended computing time. This 
chapter will present special data structures with acceptable 
runtimes which have been developed for handling operations on 
huge and dense point clouds. In the next chapter, algorithms for 
computing point curvature values will be specified. Point 

curvature values represent the curvature values of the part surface 
at each of the scanned points. Only the points immediately 
adjacent to each point are regarded, as only points in a relatively 
small neighborhood should influence these values. In order to 
determine all points located within a search radius R around a 
given point pi of the cloud, the distances dj of all other points pj in 
the cloud around pi  are computed and checked to see whether dj < 
R. If there are N points in the cloud, the computation of N·(N-1) 
distances is required, and this would result in the already-
mentioned runtime problems for large point clouds.  

To avoid this drawback, a special data structure is needed to 
compute only a few distances for each point. Several models have 
been tested and a special version of a 3D hashing table was used, 
usually known as a “3D grid method”. A general description of the 
grid method can be found in [5, 7, 9].  

The main concept of the grid method is to take only points within 
nearby grid cells into consideration. The grid cells are adjacent 
cubes with a constant size g and with axes parallel to the x-, y- and 
z-axes. The compound of all cubes enfolds the bounding box  
[xmin, xmax] x [ymin, ymax] x [zmin, zmax] of the point cloud. The last 
row in the x-, y-, and z-directions normally degenerates into a 
cuboid, as the quotient of the length of the bounding box xmax - xmin 
(the other sides, respectively) and g is generally not an integer. 
The grid cells are numbered consecutively from xmin to xmax (the 
other sides, respectively) and an integer triple { ?, µ, ? } is used to 
access the ?-th, µ-th and ?-th cell in the x-, y- and z-directions, 
which forms the cube in formula (1). 

The triple { ?, µ, ? } represents the key for accessing the cells in 
the 3D hashing table. In order to calculate the key for each point pi 
with the coordinates (xi, yi, zi) of the cloud, formula (2) – (4) is 
used: 

Here, the function y=floor(x) returns the integer value y 
representing the largest integer, which is less than or equal to x. 
Applying these simple formulas (2) – (4) has the advantage that 
the key in the hashing table may be determined for each point by 
carrying out just a few arithmetic operations. In particular, the 
checking of every cell in the 3D grid, which would once again 
lead to major runtime problems can thus be avoided. Once the key 
for each point of the cloud has been determined, the neighbors of 
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each point pi can be established simply by searching within the 
cubes with a maximum distance away from pi less than or equal to 
the search radius R. The size of the grid length g has a crucial 
influence on runtimes: If g is too small, too many cubes exist 
which contain no points and these are analyzed to no purpose. If g 
is too long, there are only a few cubes and these contain too many 
points. If no grid is used (which is the same as a grid with only 
one cube), runtime then veers towards the unacceptable, i.e. 
quadratic runtime. The diagram in fig. 1 shows the scaled runtime 
for various data sets containing approx. 100,000 points versus 
with the grid factor gf:=g / R.  

Minimal runtime can be found for gf ˜  0.5 and gf ˜  1.01. Because 
the runtime for these grid factors does not differ much, the grid 
factor gf ˜  1.01 was chosen for determining the neighbors, as 
regarding the implementation fewer grid elements are needed for a 
higher grid length, thus leading to shorter access times. 

Two alternative data structures were tested and compared with the 
3D grid method (s. fig. 2): the triple binary tree, consisting of 
three binary trees, one for each coordinate, and the octal tree. One 
point (xi, yi, zi) of the cloud will be in each node of the octal tree, 
and the eight different sub-trees in every node represent the eight 
cases of the formula (5)-(7). The binary tree and the octal tree are 
not explained in detail here, as they are standard methods which 
can be found, for example, in [5, 7, 9]. 

A runtime comparison of the three methods mentioned is given 
below which shows the runtime advantages using the 3D grid 
methods. The runtime of the methods mentioned also depends on 
the special implementation and the computer hardware used. An 
Intel 450MHz Pentium II single processor machine was used here 
with 128 MByte RAM.  

Computation of Point Curvature Values 

Once the neighbors of each point pi of the point cloud within the 
search radius R have been determined, best fit planes Ei in each 
point depending only on the neighbors of pi can be computed. 
With Taylor’s theorem, the best fit plane Ei can be interpreted as 
being a local approximation of the surface near the point pi. The 
normal vector of the plane Ei can then be interpreted as an 
approximation of the normal surface vector of the measured part. 
Fitting planes to point data is a well-known problem in CAD and 
is normally solved using least-squares methods. These methods 
are used here but are not explained in any detail (s. [2]). 

Once the normal vectors nj for the relevant points within the 
search radius R have been computed, point curvature values will 
be determined by applying formula (8) which gives an 
approximation of the average curvature of the surface of the part 
(s. [3]). To apply formula (8), the orientation of the normal vectors 
of the neighbored points must be homogenous. This must be 
ascertained first, because the calculation of point normal vectors 
with the best fit planes Ei does not automatically result in a 
homogenous orientation of the normal vectors (s. [4]).  

The homogenous orientation of two neighbored points pi and pj, 
may easily be checked if the distance between pi and pj is 
sufficiently small and the normal directions do not therefore vary 
significantly. 

Here, pi · pj denotes the Euclidean scalar product of pi and pj. If the 
normal vectors are not homogenously oriented, nj is multiplied 
with -1 to change its orientation. 

Tracking Edges Based on Point Curvature Values 

Using the point curvature values, a pre-segmentation of the points 
may be performed by applying a simple threshold operation. 
When implementing the algorithms, the point curvature threshold 
value is an interactive changeable value. In order to find an 
acceptable threshold value, all points with point curvature values 
higher than the threshold value are marked. Edge-tracking is 
carried out only on these pre-segmented points. Initially, the pre-
segmented points are sorted by decreasing point curvature values. 
Starting with the point with the highest curvature value, the edges 
are then tracked. The main objective in tracking edges is to search 

 
Fig. 1:  Runtime vs. grid factor 

 

Fig. 2:  Runtimes for the 3D grid, octal tree and triple binary 
tree methods 
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for points with maximum point curvature values. Once some edge 
points have been tracked, the neighbors of the last tracked edge 
point within a search radius Rt are determined using the 3D grid 
method explained above. Within the neighbor points, the point 
with the maximum curvature is searched for and stored as the next 
edge point. This procedure is repeated until no further edge point 
within the pre-segmented points can be found. (s. [1, 6, 8]). 

If only these criteria are applied, the tracking of edges does not 
lead to the desired results, due to the following problems: 

• The tracked edges will not cover the whole area of the points 
located with point curvature values above the threshold 
value. Due to the fact that results are sorted according to 
curvature values, above iteration would only track the first 
point with a maximum curvature value, and this would 
remain the point with the maximum curvature value for all 
further repeated steps. This must be avoided by excluding 
points which have already been tracked. 

• If there is an area with points with relatively high curvature 
values, all these points would be tracked (sorted by 
decreasing curvature values), before the edge "leaves" this 
area and points outside would be tracked. Iteration would not 
lead to the desired result. In such cases, only a few 
representative points within this area should be tracked. 

To avoid the problems mentioned above, forbidden areas need to 
be defined. Points within the forbidden areas are then excluded 
from the following iteration steps. Each time a new point is added 
to the edge list, the forbidden area is updated and enlarged. The 
forbidden area includes all points within a tube consisting of 
cylinders and spheres (s. fig. 3).  

For each edge line already detected, one cylinder is computed with 
this edge line as the centerline of the cylinder. For each edge point 
except the first and the last edge point, one sphere is computed 
with the edge point as the center of the sphere. The radius of the 
cylinders and the spheres is set to the search radius Rt. 

Examples and Limitations of the Method 

By applying the methods described here, it is clear that the quality 
of the tracked edges is dependent upon the quality of the point 
clouds measured. To measure noise dependency in a point cloud, a 
virtual point cloud consisting of 500 x 21 points is computed, 
superimposed with (computed) statistical noise. Here, normally-
distributed noise value (Gaussian distribution) in x-, y- and z-
directions is computed. The points are located on a regular grid on 
two intersecting planes (500 x 11 points each) with a defined 
angle of intersection superimposed with the computed errors. The 

deviation (Euclidean distance) between the computed feature-line 
and the original intersection line distfl and also the standard 
deviation (RMS error) of the computed noise s  are then divided 
by the average minimal distance distpt of the points to obtain the 
scale invariant values for relative noise and relative deviation.  

Fig. 4 shows the dependency between the relative deviation of the 
computed feature line and the original intersection line vs. the 
relative noise for the different angles of intersection 10°, 30°, 60° 
and 90°. The diagram shows that the relative deviation decreases 
as the angles increase. As far as the intersection angles of 30°, 60° 
and 90° are concerned, the relative deviation is smaller than the 
relative noise, a fact which demonstrates the stability of these 
methods for noisy point clouds with sharp edges. 

Fig. 5 shows four steps of the reverse engineering process for the 
test part, in this case a shoe: Scanned point cloud (top left), 
extracted feature lines (top right), feature lines completed with 
interactive constructed boundaries (bottom left) and surface model 
(bottom right). The new method has been tested extensively by 
industrial users. It showed that the manual extraction of feature 
lines without applying the new method is mostly a very time-
consuming task. On the other hand, automated feature-line 
extraction usually takes just a few seconds. The accuracy of the 
feature lines extracted automatically also increases substantially in 

 

Fig. 3:  Forbidden area made up  of cylinders and spheres 

 
Fig. 4:  Relative deviation of feature lines vs. relative noise 
(Gaussian distribution of errors) 

 

Fig. 5:  Reverse engineering of a shoe: point cloud, 
extracted feature lines, completed boundaries, surface model  
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comparison with manually extracted feature lines, as the quality of 
manually extracted feature lines is generally rather poor.  

Further tests with scanned data showed that the deviation of the 
computed edges increases if the point cloud distribution is less 
uniform. With unevenly distributed clouds, the determination of 
neighbors for each point within a constant search radius results in 
point sets, with some of them possibly being too small for small 
search radii and some too big for big search radii. As a result, the 
computation of fit planes may either fail or be less accurate. This 
could occur, for example, in the case of triangulated point clouds 
which can be exported directly from some scanners. Before being 
exported, the triangulated point clouds are usually optimized by 
reducing triangles in flat areas of the scanned part in order to 
decrease the number of triangles and the resulting file size, which 
will give rise to unevenly distributed point clouds and the 
problems mentioned above. 

Another possible problem is the existence of smooth edges, one 
example being the case where two intersecting planes have been 
trimmed and connected to a fillet with a constant or linearly-
increasing radius. If the maximum radius of the fillet is relatively 
small, the described method results in edges “somewhere” in the 
middle of the fillet which may be considered as an acceptable 
result. However, in the case of fillets with larger radii where the 
algorithms listed here for the extraction of feature lines may 
possibly fail, an automatic detection of the trimming curves 
(beginning or end of the fillet, respectively) would be of more 
interest for reverse engineering applications. These fillet end lines 
are also called feature lines. The automated feature line extraction 
for non-uniform point distributions and the automatic detection of 
feature lines for fillets are currently being developed. 

Conclusion 

Automatic feature-line detection is an important tool for reverse 
engineering applications. Using the algorithms described, the 
location of sharp edges in 3D scanner data can be determined 
automatically. Data structures have been introduced which are 
capable of handling even huge, dense point clouds. The limitations 
of the methods are apparent in cases with non-uniform point 
distributions and parts with fewer sharp edges, but these problems 
are currently being worked on and will soon be ready for 
presentation. 
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