
Fraunhofer, Institute Manufacturing Engineering and Automation

Feature-line Extraction from Point Clouds*

Engelbert Westkämper; Ralph Peter Knorpp; Norbert Schuhmann

Abstract:
Feature lines are a substantial means for segmenting measured point clouds, especially in cases where a surface model
needs to be generated from the data. In this article, methods will be described for the automated extraction of feature
lines from measured or scanned point clouds. These methods can be applied to points from any sensors as they do not
require sorted or edited data sets. In this paper, the mathematical basis for the extraction of feature lines, experimental
results and the limitations of the methods will all be presented.

Keywords: Computer Aided Engineering, Reverse Engineering, Feature Lines.

Introduction

To date, a 3D CAD model is usually derived from an existing
physical part firstly by scanning the physical part with a 3D
scanner, e.g. laser triangulation scanner or coordinate measuring
machine (CMM) and then measuring and analyzing the dense
discrete point data in order to obtain the 3D CAD model. In the
case of laser scanners with varying densities, for example, the
measured data is typically in the form of large point clouds made
up of millions of points. One class of reverse engineering methods
is based on the segmentation of point clouds into polygonal
regions to fit an individual surface to each region (s. [10]). To
avoid undesired smooth surfaces in regions with sharp edges, the
boundaries of each polygonal region should be formed by the
sharp edges of the scanned part (together with additional
boundaries). As this segmentation must be carried out manually in
current CAD systems, this paper deals mainly with methods for
extracting feature lines (sharp edges or edges with small radii)
from scanned point clouds automatically. In order to be
irrespective of special 3D scanners, no point cloud order
information will be taken into consideration – the point cloud will
be regarded as totally unsorted scattered data. Data structures will
be presented capable of handling even huge point clouds
efficiently.

The algorithms for automated feature-line extraction attempt to
find locations where surface normal vectors suddenly change
direction. This seems to be a contradiction as normal vectors
cannot be determined until the surface has been computed, but
normal vectors are required so that the boundaries of the surface
may be calculated first. However, algorithms for the robust
approximation of normal vectors have been developed and will be
described in this paper. As the change in direction of normal
vectors represents the curvature of the part surface, the feature line
extraction will therefore be based on these point curvature values.

Data Structures for Operations on Dense Point Clouds

Scanning with modern tactile or optical devices results in point
clouds containing as many as several millions of points.
Algorithms depending quadratically on the number of points may
no longer be used here due to the extended computing time. This
chapter will present special data structures with acceptable
runtimes which have been developed for handling operations on
huge and dense point clouds. In the next chapter, algorithms for
computing point curvature values will be specified. Point

curvature values represent the curvature values of the part surface
at each of the scanned points. Only the points immediately
adjacent to each point are regarded, as only points in a relatively
small neighborhood should influence these values. In order to
determine all points located within a search radius R around a
given point pi of the cloud, the distances dj of all other points pj in
the cloud around pi are computed and checked to see whether dj <
R. If there are N points in the cloud, the computation of N·(N-1)
distances is required, and this would result in the already-
mentioned runtime problems for large point clouds.

To avoid this drawback, a special data structure is needed to
compute only a few distances for each point. Several models have
been tested and a special version of a 3D hashing table was used,
usually known as a “3D grid method”. A general description of the
grid method can be found in [5, 7, 9].

The main concept of the grid method is to take only points within
nearby grid cells into consideration. The grid cells are adjacent
cubes with a constant size g and with axes parallel to the x-, y- and
z-axes. The compound of all cubes enfolds the bounding box
[xmin, xmax] x [ymin, ymax] x [zmin, zmax] of the point cloud. The last
row in the x-, y-, and z-directions normally degenerates into a
cuboid, as the quotient of the length of the bounding box xmax - xmin
(the other sides, respectively) and g is generally not an integer.
The grid cells are numbered consecutively from xmin to xmax (the
other sides, respectively) and an integer triple { ?, µ, ? } is used to
access the ?-th, µ-th and ?-th cell in the x-, y- and z-directions,
which forms the cube in formula (1).

The triple { ?, µ, ? } represents the key for accessing the cells in
the 3D hashing table. In order to calculate the key for each point pi
with the coordinates (xi, yi, zi) of the cloud, formula (2) – (4) is
used:

Here, the function y=floor(x) returns the integer value y
representing the largest integer, which is less than or equal to x.
Applying these simple formulas (2) – (4) has the advantage that
the key in the hashing table may be determined for each point by
carrying out just a few arithmetic operations. In particular, the
checking of every cell in the 3D grid, which would once again
lead to major runtime problems can thus be avoided. Once the key
for each point of the cloud has been determined, the neighbors of

}{ []
[]
[]gzgz

gygy
gxgx

)1(,
(1))1(,

)1(,,,

minmin

minmin

minmin

+++×
+++×

+++→

κκ
µµ
λλκµλ

* This work was supported by the European Community in the project
“Intelligent Manufacturing Systems – Rapid Product Development”, Brite-
EuRam project BE-97-5501.

() ()()
() ()()
() ()() (4) /:

(3) /:

(2) /:

minmaxmax

minmaxmin

minmaxmin

zzzzfloor
yyyyfloor

xxxxfloor

i

i

i

−−=
−−=
−−=

κ
µ
λ

each point pi can be established simply by searching within the
cubes with a maximum distance away from pi less than or equal to
the search radius R. The size of the grid length g has a crucial
influence on runtimes: If g is too small, too many cubes exist
which contain no points and these are analyzed to no purpose. If g
is too long, there are only a few cubes and these contain too many
points. If no grid is used (which is the same as a grid with only
one cube), runtime then veers towards the unacceptable, i.e.
quadratic runtime. The diagram in fig. 1 shows the scaled runtime
for various data sets containing approx. 100,000 points versus
with the grid factor gf:=g / R.

Minimal runtime can be found for gf ˜ 0.5 and gf ˜ 1.01. Because
the runtime for these grid factors does not differ much, the grid
factor gf ˜ 1.01 was chosen for determining the neighbors, as
regarding the implementation fewer grid elements are needed for a
higher grid length, thus leading to shorter access times.

Two alternative data structures were tested and compared with the
3D grid method (s. fig. 2): the triple binary tree, consisting of
three binary trees, one for each coordinate, and the octal tree. One
point (xi, yi, zi) of the cloud will be in each node of the octal tree,
and the eight different sub-trees in every node represent the eight
cases of the formula (5)-(7). The binary tree and the octal tree are
not explained in detail here, as they are standard methods which
can be found, for example, in [5, 7, 9].

A runtime comparison of the three methods mentioned is given
below which shows the runtime advantages using the 3D grid
methods. The runtime of the methods mentioned also depends on
the special implementation and the computer hardware used. An
Intel 450MHz Pentium II single processor machine was used here
with 128 MByte RAM.

Computation of Point Curvature Values

Once the neighbors of each point pi of the point cloud within the
search radius R have been determined, best fit planes Ei in each
point depending only on the neighbors of pi can be computed.
With Taylor’s theorem, the best fit plane Ei can be interpreted as
being a local approximation of the surface near the point pi. The
normal vector of the plane Ei can then be interpreted as an
approximation of the normal surface vector of the measured part.
Fitting planes to point data is a well-known problem in CAD and
is normally solved using least-squares methods. These methods
are used here but are not explained in any detail (s. [2]).

Once the normal vectors nj for the relevant points within the
search radius R have been computed, point curvature values will
be determined by applying formula (8) which gives an
approximation of the average curvature of the surface of the part
(s. [3]). To apply formula (8), the orientation of the normal vectors
of the neighbored points must be homogenous. This must be
ascertained first, because the calculation of point normal vectors
with the best fit planes Ei does not automatically result in a
homogenous orientation of the normal vectors (s. [4]).

The homogenous orientation of two neighbored points pi and pj,
may easily be checked if the distance between pi and pj is
sufficiently small and the normal directions do not therefore vary
significantly.

Here, pi · pj denotes the Euclidean scalar product of pi and pj. If the
normal vectors are not homogenously oriented, nj is multiplied
with -1 to change its orientation.

Tracking Edges Based on Point Curvature Values

Using the point curvature values, a pre-segmentation of the points
may be performed by applying a simple threshold operation.
When implementing the algorithms, the point curvature threshold
value is an interactive changeable value. In order to find an
acceptable threshold value, all points with point curvature values
higher than the threshold value are marked. Edge-tracking is
carried out only on these pre-segmented points. Initially, the pre-
segmented points are sorted by decreasing point curvature values.
Starting with the point with the highest curvature value, the edges
are then tracked. The main objective in tracking edges is to search

Fig. 1: Runtime vs. grid factor

Fig. 2: Runtimes for the 3D grid, octal tree and triple binary
tree methods

(7) , , .8

(6) , , .2
(5) , , .1

iii

iii

iii

zzyyxx

zzyyxx
zzyyxx

≥≥≥

≥<<
<<<

M

∑
= −

−
=

nbN

j ji

ji

inb
i pp

nn

pN
c

1

(8)
)(

1
 :

(10) , orientedly homogenousnot areand1

(9) orientedly homogenous areand1

jiji

jiji

nnnn

nnnn

⇒−≈⋅

⇒+≈⋅

Number of points

R
un

tim
e

[s
]

grid factor g / R

sc
al

ed
 r

un
tim

e

for points with maximum point curvature values. Once some edge
points have been tracked, the neighbors of the last tracked edge
point within a search radius Rt are determined using the 3D grid
method explained above. Within the neighbor points, the point
with the maximum curvature is searched for and stored as the next
edge point. This procedure is repeated until no further edge point
within the pre-segmented points can be found. (s. [1, 6, 8]).

If only these criteria are applied, the tracking of edges does not
lead to the desired results, due to the following problems:

• The tracked edges will not cover the whole area of the points
located with point curvature values above the threshold
value. Due to the fact that results are sorted according to
curvature values, above iteration would only track the first
point with a maximum curvature value, and this would
remain the point with the maximum curvature value for all
further repeated steps. This must be avoided by excluding
points which have already been tracked.

• If there is an area with points with relatively high curvature
values, all these points would be tracked (sorted by
decreasing curvature values), before the edge "leaves" this
area and points outside would be tracked. Iteration would not
lead to the desired result. In such cases, only a few
representative points within this area should be tracked.

To avoid the problems mentioned above, forbidden areas need to
be defined. Points within the forbidden areas are then excluded
from the following iteration steps. Each time a new point is added
to the edge list, the forbidden area is updated and enlarged. The
forbidden area includes all points within a tube consisting of
cylinders and spheres (s. fig. 3).

For each edge line already detected, one cylinder is computed with
this edge line as the centerline of the cylinder. For each edge point
except the first and the last edge point, one sphere is computed
with the edge point as the center of the sphere. The radius of the
cylinders and the spheres is set to the search radius Rt.

Examples and Limitations of the Method

By applying the methods described here, it is clear that the quality
of the tracked edges is dependent upon the quality of the point
clouds measured. To measure noise dependency in a point cloud, a
virtual point cloud consisting of 500 x 21 points is computed,
superimposed with (computed) statistical noise. Here, normally-
distributed noise value (Gaussian distribution) in x-, y- and z-
directions is computed. The points are located on a regular grid on
two intersecting planes (500 x 11 points each) with a defined
angle of intersection superimposed with the computed errors. The

deviation (Euclidean distance) between the computed feature-line
and the original intersection line distfl and also the standard
deviation (RMS error) of the computed noise s are then divided
by the average minimal distance distpt of the points to obtain the
scale invariant values for relative noise and relative deviation.

Fig. 4 shows the dependency between the relative deviation of the
computed feature line and the original intersection line vs. the
relative noise for the different angles of intersection 10°, 30°, 60°
and 90°. The diagram shows that the relative deviation decreases
as the angles increase. As far as the intersection angles of 30°, 60°
and 90° are concerned, the relative deviation is smaller than the
relative noise, a fact which demonstrates the stability of these
methods for noisy point clouds with sharp edges.

Fig. 5 shows four steps of the reverse engineering process for the
test part, in this case a shoe: Scanned point cloud (top left),
extracted feature lines (top right), feature lines completed with
interactive constructed boundaries (bottom left) and surface model
(bottom right). The new method has been tested extensively by
industrial users. It showed that the manual extraction of feature
lines without applying the new method is mostly a very time-
consuming task. On the other hand, automated feature-line
extraction usually takes just a few seconds. The accuracy of the
feature lines extracted automatically also increases substantially in

Fig. 3: Forbidden area made up of cylinders and spheres

Fig. 4: Relative deviation of feature lines vs. relative noise
(Gaussian distribution of errors)

Fig. 5: Reverse engineering of a shoe: point cloud,
extracted feature lines, completed boundaries, surface model

Edge points

relative noise

re
la

tiv
e

de
vi

at
io

n

comparison with manually extracted feature lines, as the quality of
manually extracted feature lines is generally rather poor.

Further tests with scanned data showed that the deviation of the
computed edges increases if the point cloud distribution is less
uniform. With unevenly distributed clouds, the determination of
neighbors for each point within a constant search radius results in
point sets, with some of them possibly being too small for small
search radii and some too big for big search radii. As a result, the
computation of fit planes may either fail or be less accurate. This
could occur, for example, in the case of triangulated point clouds
which can be exported directly from some scanners. Before being
exported, the triangulated point clouds are usually optimized by
reducing triangles in flat areas of the scanned part in order to
decrease the number of triangles and the resulting file size, which
will give rise to unevenly distributed point clouds and the
problems mentioned above.

Another possible problem is the existence of smooth edges, one
example being the case where two intersecting planes have been
trimmed and connected to a fillet with a constant or linearly-
increasing radius. If the maximum radius of the fillet is relatively
small, the described method results in edges “somewhere” in the
middle of the fillet which may be considered as an acceptable
result. However, in the case of fillets with larger radii where the
algorithms listed here for the extraction of feature lines may
possibly fail, an automatic detection of the trimming curves
(beginning or end of the fillet, respectively) would be of more
interest for reverse engineering applications. These fillet end lines
are also called feature lines. The automated feature line extraction
for non-uniform point distributions and the automatic detection of
feature lines for fillets are currently being developed.

Conclusion

Automatic feature-line detection is an important tool for reverse
engineering applications. Using the algorithms described, the
location of sharp edges in 3D scanner data can be determined
automatically. Data structures have been introduced which are
capable of handling even huge, dense point clouds. The limitations
of the methods are apparent in cases with non-uniform point
distributions and parts with fewer sharp edges, but these problems
are currently being worked on and will soon be ready for
presentation.

References

1 Bhandarkar, S. M.; Siebert, A.: Integrating edge and surface
information for range image segmentation. Pattern Recognition 25
(1992) 9, pp. 947-961

2 Geise, G.; Schippke, S.: Ausgleichsgerade, -kreis, -ebene, -kugel im
Raum. Mathematische Nachrichten 62 (1974) pp. 65-75

3 Hoffmann, R;, Jain, A.K.: Segmentation and classification of range
images. IEEE Transactions on Pattern Analysis and Machine
Intelligence 9 (1987) No. 5, pp. 608-620

4 Hoppe, H.: Surface Reconstruction from Unorganized Points. PhD
Thesis Univ. Washington, 1994

5 Knorpp, R.: Formleitlinien fuer die Flaechenrueckfuehrung – Extrak-
tion von Kanten und Radiusauslauflinien aus unstrukturierten 3D-
Messpunktmengen. Springer, Stuttgart 1998

6 Lange, M.: Segmentierung von Konturen auf der Basis von Kruem-
mungsberechnungen. 13. DAGM-Symposium Mustererkennung 1991.
Radig, B. (Ed.).Springer, Berlin: 1991

7 Nievergelt, J.; Hinrichs, K.: Programmierung und Datenstrukturen.
Springer, Berlin1986

8 Roth, G.; Levine, D.: Extracting geometric primitives. Computer
Vision, Graphics Image Processing: Image Understanding 58 (1993),
pp. 1-22

9 Sedgewick, R.: Algorithms. Addison-Wesley, New York 1991

10 Trucco, E.; Fisher, R. B.: Experiments in Curvature-Based Seg-
mentation of Range Data. IEEE Transactions on Pattern Analysis and
Machine Intelligence 17 (1995) 2, pp. 177-182

11 Varadi, T.; Martin R.; Cox J.: Reverse engineering of geometric
models – an introduction. In: Computer-Aided Design 29 (1997) 4,
pp. 255-268

12 Wang. W.; Iyengar, S. S.: Efficient Data Structures for Model-Based
3-D Object Recognition and Localization from Range Images. IEEE
Transactions on Pattern Analysis and Machine Intelligence 14 (1992)
10, pp. 1035-1045

13 Wani, M. A.; Batchelor, B.G.: Edge-Region-Based Segmentation of
Range Images. IEEE Transactions on Pattern Analysis and Machine
Intelligence 16 (1994) 3, pp. 314-319

